Angular momentum in human walking.
نویسندگان
چکیده
Angular momentum is a conserved physical quantity for isolated systems where no external moments act about a body's center of mass (CM). However, in the case of legged locomotion, where the body interacts with the environment (ground reaction forces), there is no a priori reason for this relationship to hold. A key hypothesis in this paper is that angular momentum is highly regulated throughout the walking cycle about all three spatial directions [|Lt| approximately 0], and therefore horizontal ground reaction forces and the center of pressure trajectory can be explained predominantly through an analysis that assumes zero net moment about the body's CM. Using a 16-segment human model and gait data for 10 study participants, we found that calculated zero-moment forces closely match experimental values (Rx2=0.91; Ry2=0.90). Additionally, the centroidal moment pivot (point where a line parallel to the ground reaction force, passing through the CM, intersects the ground) never leaves the ground support base, highlighting how closely the body regulates angular momentum. Principal component analysis was used to examine segmental contributions to whole-body angular momentum. We found that whole-body angular momentum is small, despite substantial segmental momenta, indicating large segment-to-segment cancellations ( approximately 95% medio-lateral, approximately 70% anterior-posterior and approximately 80% vertical). Specifically, we show that adjacent leg-segment momenta are balanced in the medio-lateral direction (left foot momentum cancels right foot momentum, etc.). Further, pelvis and abdomen momenta are balanced by leg, chest and head momenta in the anterior-posterior direction, and leg momentum is balanced by upper-body momentum in the vertical direction. Finally, we discuss the determinants of gait in the context of these segment-to-segment cancellations of angular momentum.
منابع مشابه
Spin Angular Momentum in Human Walking: Magnitude, Dimensionality and Distribution
Short Title: Angular momentum in human walking Summary In this study we examine the relative size of whole-body spin angular momentum in human walking, and the dimensionality and distribution of intersegment angular momentum. Using a 16-segment human model and kinetic and kinematic gait data, we examine whole-body rotational dynamics for ten study participants walking at self-selected speeds. A...
متن کاملIs angular momentum in the horizontal plane during gait a controlled variable?
It has been suggested that angular momentum in the horizontal plane during human gait is controlled (i.e., kept minimal). However, this has not been explored in conditions when angular momentum of different segments is manipulated explicitly. In order to examine the behavior of angular momentum, 12 participants walked in 17 conditions in which angular momentum of either the arms or legs was man...
متن کاملAngular momentum of walking at different speeds.
Recently, researchers in robotics have used regulation of the angular momentum of body segments about the total body center of mass (CoM) to develop control strategies for bipedal gait. This work was spurred by reports finding that for a "large class" of human movement tasks, including standing, walking, and running the angular momentum is conserved about the CoM. However, there is little data ...
متن کاملWhole-body angular momentum during stair ascent and descent.
The generation of whole-body angular momentum is essential in many locomotor tasks and must be regulated in order to maintain dynamic balance. However, angular momentum has not been investigated during stair walking, which is an activity that presents a biomechanical challenge for balance-impaired populations. We investigated three-dimensional whole-body angular momentum during stair ascent and...
متن کاملMuscle contributions to whole-body sagittal plane angular momentum during walking.
Walking is a complex dynamic task that requires the regulation of whole-body angular momentum to maintain dynamic balance while performing walking subtasks such as propelling the body forward and accelerating the leg into swing. In human walking, the primary mechanism to regulate angular momentum is muscle force generation. Muscles accelerate body segments and generate ground reaction forces th...
متن کاملConservation of Angular Momentum During Human Loco- motion
Motivation: The mechanics of walking and running are extremely complicated, exemplified by the fact that no robots can perform robust human walking. By focusing on angular momentum, a fundamental physical concept, we hope to develop a relatively simple model of stable motion. The angular momentum of a system is conserved if no external torques act on the system. During the aerial phase of locom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 211 Pt 4 شماره
صفحات -
تاریخ انتشار 2008